Перевод: со всех языков на английский

с английского на все языки

Society of Manufacturing Engineers

  • 1 Society of Manufacturing Engineers

    Polymers: SME

    Универсальный русско-английский словарь > Society of Manufacturing Engineers

  • 2 Общество инженеровпроизводственников

    Универсальный русско-английский словарь > Общество инженеровпроизводственников

  • 3 SME

    Англо-русский словарь промышленной и научной лексики > SME

  • 4 Taylor, Frederick Winslow

    [br]
    b. 20 March 1856 Germantown, Pennsylvania, USA
    d. 21 March 1915 Philadelphia, Pennsylvania, USA
    [br]
    American mechanical engineer and pioneer of scientific management.
    [br]
    Frederick W.Taylor received his early education from his mother, followed by some years of schooling in France and Germany. Then in 1872 he entered Phillips Exeter Academy, New Hampshire, to prepare for Harvard Law School, as it was intended that he should follow his father's profession. However, in 1874 he had to abandon his studies because of poor eyesight, and he began an apprenticeship at a pump-manufacturing works in Philadelphia learning the trades of pattern-maker and machinist. On its completion in 1878 he joined the Midvale Steel Company, at first as a labourer but then as Shop Clerk and Foreman, finally becoming Chief Engineer in 1884. At the same time he was able to resume study in the evenings at the Stevens Institute of Technology, and in 1883 he obtained the degree of Mechanical Engineer (ME). He also found time to take part in amateur sport and in 1881 he won the tennis doubles championship of the United States.
    It was while with the Midvale Steel Company that Taylor began the systematic study of workshop management, and the application of his techniques produced significant increases in the company's output and productivity. In 1890 he became Manager of a company operating large paper mills in Maine and Wisconsin, until 1893 when he set up on his own account as a consulting engineer specializing in management organization. In 1898 he was retained exclusively by the Bethlehem Steel Company, and there continued his work on the metal-cutting process that he had started at Midvale. In collaboration with J.Maunsel White (1856–1912) he developed high-speed tool steels and their heat treatment which increased cutting capacity by up to 300 per cent. He resigned from the Bethlehem Steel Company in 1901 and devoted the remainder of his life to expounding the principles of scientific management which became known as "Taylorism". The Society to Promote the Science of Management was established in 1911, renamed the Taylor Society after his death. He was an active member of the American Society of Mechanical Engineers and was its President in 1906; his presidential address "On the Art of Cutting Metals" was reprinted in book form.
    [br]
    Principal Honours and Distinctions
    Paris Exposition Gold Medal 1900. Franklin Institute Elliott Cresson Gold Medal 1900. President, American Society of Mechanical Engineers 1906. Hon. ScD, University of Pennsylvania 1906. Hon. LLD, Hobart College 1912.
    Bibliography
    F.W.Taylor was the author of about 100 patents, several papers to the American Society of Mechanical Engineers, On the Art of Cutting Metals (1907, New York) and The Principles of Scientific Management (1911, New York) and, with S.E.Thompson, 1905 A Treatise on Concrete, New York, and Concrete Costs, 1912, New York.
    Further Reading
    The standard biography is Frank B.Copley, 1923, Frederick W.Taylor, Father of Scientific Management, New York (reprinted 1969, New York) and there have been numerous commentaries on his work: see, for example, Daniel Nelson, 1980, Frederick W.Taylor and the Rise of Scientific Management, Madison, Wis.
    RTS

    Biographical history of technology > Taylor, Frederick Winslow

  • 5 Whitworth, Sir Joseph

    [br]
    b. 21 December 1803 Stockport, Cheshire, England
    d. 22 January 1887 Monte Carlo, Monaco
    [br]
    English mechanical engineer and pioneer of precision measurement.
    [br]
    Joseph Whitworth received his early education in a school kept by his father, but from the age of 12 he attended a school near Leeds. At 14 he joined his uncle's mill near Ambergate, Derbyshire, to learn the business of cotton spinning. In the four years he spent there he realized that he was more interested in the machinery than in managing a cotton mill. In 1821 he obtained employment as a mechanic with Crighton \& Co., Manchester. In 1825 he moved to London and worked for Henry Maudslay and later for the Holtzapffels and Joseph Clement. After these years spent gaining experience, he returned to Manchester in 1833 and set up in a small workshop under a sign "Joseph Whitworth, Tool Maker, from London".
    The business expanded steadily and the firm made machine tools of all types and other engineering products including steam engines. From 1834 Whitworth obtained many patents in the fields of machine tools, textile and knitting machinery and road-sweeping machines. By 1851 the company was generally regarded as the leading manufacturer of machine tools in the country. Whitworth was a pioneer of precise measurement and demonstrated the fundamental mode of producing a true plane by making surface plates in sets of three. He advocated the use of the decimal system and made use of limit gauges, and he established a standard screw thread which was adopted as the national standard. In 1853 Whitworth visited America as a member of a Royal Commission and reported on American industry. At the time of the Crimean War in 1854 he was asked to provide machinery for manufacturing rifles and this led him to design an improved rifle of his own. Although tests in 1857 showed this to be much superior to all others, it was not adopted by the War Office. Whitworth's experiments with small arms led on to the construction of big guns and projectiles. To improve the quality of the steel used for these guns, he subjected the molten metal to pressure during its solidification, this fluid-compressed steel being then known as "Whitworth steel".
    In 1868 Whitworth established thirty annual scholarships for engineering students. After his death his executors permanently endowed the Whitworth Scholarships and distributed his estate of nearly half a million pounds to various educational and charitable institutions. Whitworth was elected an Associate of the Institution of Civil Engineers in 1841 and a Member in 1848 and served on its Council for many years. He was elected a Member of the Institution of Mechanical Engineers in 1847, the year of its foundation.
    [br]
    Principal Honours and Distinctions
    Baronet 1869. FRS 1857. President, Institution of Mechanical Engineers 1856, 1857 and 1866. Hon. LLD Trinity College, Dublin, 1863. Hon. DCL Oxford University 1868. Member of the Smeatonian Society of Civil Engineers 1864. Légion d'honneur 1868. Society of Arts Albert Medal 1868.
    Bibliography
    1858, Miscellaneous Papers on Mechanical Subjects, London; 1873, Miscellaneous Papers on Practical Subjects: Guns and Steel, London (both are collections of his papers to technical societies).
    1854, with G.Wallis, The Industry of the United States in Machinery, Manufactures, and
    Useful and Ornamental Arts, London.
    Further Reading
    F.C.Lea, 1946, A Pioneer of Mechanical Engineering: Sir Joseph Whitworth, London (a short biographical account).
    A.E.Musson, 1963, "Joseph Whitworth: toolmaker and manufacturer", Engineering Heritage, Vol. 1, London, 124–9 (a short biography).
    D.J.Jeremy (ed.), 1984–6, Dictionary of Business Biography, Vol. 5, London, 797–802 (a short biography).
    W.Steeds, 1969, A History of Machine Tools 1700–1910, Oxford (describes Whitworth's machine tools).
    RTS

    Biographical history of technology > Whitworth, Sir Joseph

  • 6 Case, Jerome Increase

    [br]
    b. 1819 Williamstown, Oswego County, New York, USA
    d. 1891 USA
    [br]
    American manufacturer and founder of the Case company of agricultural engineers.
    [br]
    J.I.Case was the son of a former and began his working life operating the family's Groundhog threshing machine. He moved into contract threshing, and used the money he earned to pay his way through a business academy. He became the agent for the Groundhog thresher in his area and at the age of 23 decided to move west, taking six machines with him. He sold five of these to obtain working capital, and in 1842 moved from Williamstown, New York, to Rochester, Wisconsin, where he established his manufacturing company. He produced the first combined thresher-winnower in the US in 1843. Two years later he moved to Racine, on the shores of Lake Michigan in the same state. Within four years the Case company became Racine's biggest company and largest employer, a position it was to retain into the twentieth century. As early as 1860 Case was shipping threshing machines around the Horn to California.
    Apart from having practical expertise Case was also a skilled demonstrator, and it was this combination which resulted in the sure growth of his company. In 1869 he produced his first portable steam engine and in 1876 his first traction engine. By the mid 1870s he was selling a significant proportion of the machines in use in America. By 1878 Case threshing machines had penetrated the European market, and in 1885 sales to South America began. Case also became the world's largest manufacturer of steam engines.
    J.I.Case himself, whilst still actively involved with the company, also became involved in politics. He was Mayor of Racine for three terms and State Senator for two. He was also President of the Manufacturers' National Bank of Racine and Founder of the First National Bank of Burlington. He founded the Wisconsin Academy of Science, Arts and Letters and was President of the Racine County Agricultural Society. He had time for sport and was owner of the world's all-time champion trotter-pacer.
    Continued expansion of the company after J.I. Case's death led eventually to its acquisition by Tenneco in 1967, and in 1985 the company took over International Harvester. As Case I.H. it continues to produce a full range of agricultural, earth-moving and heavy-transport equipment.
    [br]
    Further Reading
    Despite the size and importance of the company he created, very little has been written about Case. On particular anniversaries the company has produced celebratory publications, and surprisingly these still seem to be the main source of information about him.
    R.B.Gray, 1975, The Agricultural Tractor 1855–1950, American Society of Agricultural Engineers (traces the history of power on the farm, in which Case and his machines played such an important role).
    AP

    Biographical history of technology > Case, Jerome Increase

  • 7 Deere, John

    [br]
    b. 7 February 1804 Rutland, Vermont, USA
    d. 17 May 1886 USA
    [br]
    American inventor and manufacturer of agricultural equipment.
    [br]
    John Deere was the son of a tailor, and first worked as a tanner before becoming apprenticed to a blacksmith. He married Demarius Lamb in 1827, but it appears that competition for blacksmiths was fierce, and the Deere family moved frequently. Two attempts to establish forges ended in fires, and changing partnerships and arguments over debts were to be a feature of Deere's working life. In 1836 John Deere moved west on his own, in an attempt to establish himself. He settled in Grand Detour, Illinois. In this new frontier a blacksmith's skills were sought after, and the blacksmith, with no ready supply of raw materials, had to be able to operate both a furnace for melting metal and a forge for working it. Deere was sufficiently successful for his family to be able to join him. A chance visit to a sawmill and the acquisition of a broken saw blade led to the making of a plough that was to establish John Deere in manufacturing. There were two distinctive features associated with the plough: the soil in the area failed to stick to the steel blade, with obvious benefits to the draught of the implement; and second, the shape of the working mouldboard was square. The reputation that developed with his first three ploughs established that Deere had made the transition from blacksmith to manufacturer.
    Over the next decade he had a number of partnerships and eventually set up a factory in Moline, Illinois, in 1848. The following year he sold 2,136 ploughs, and by early 1850 he was producing 350 ploughs per month. Deere was devastated by the loss of his eldest son in the year that the company moved to Moline. However, his second son, Charles, joined him in 1851 and was to be a major influence on the way in which the company developed over the next half-century. The company branched out into the production of cultivators, harrows, drills and wagons. John Deere himself played an active part in the company, but also played an increasing role in public life, with a particular interest in education. The company was incorporated in 1868.
    [br]
    Further Reading
    The following both provide biographical details of John Deere, but are mainly concerned with the company and the equipment it produced: W.G.Broehl, 1984, John Deere's Company: A History of Deere and Company and its
    Times, American Society of Agricultural Engineers.
    D.Macmillan, 1988, John Deere Tractors and Equipment, American Society of Agricultural Engineers.
    AP

    Biographical history of technology > Deere, John

  • 8 Rowland, Thomas Fitch

    [br]
    b. 15 March 1831 New Haven, Connecticut, USA
    d. 13 December 1907 New York City, USA
    [br]
    American engineer and manufacturer, inventor of off-shore drilling.
    [br]
    The son of a grist miller, Rowland worked in various jobs until 1859 when he established his own business for the construction of wooden and iron steamships and for structural iron works, in Greenpoint, Long Island, New York. In 1860 he founded the Continental Works and during the American Civil War he started manufacturing gun carriages and mortar beds. He fitted out many vessels for the navy, and as a contractor for John Ericsson he built heavily armoured war vessels.
    He continued shipbuilding, but later diversified his business. He devoted great attention to the design of gas-works, constructing innovative storage facilities all over the United States, and he was concerned with the improvement of welding iron and steel plates and other processes in the steel industry. In the late 1860s he also began the manufacture of steam-engines and boilers for use in the new but expanding oil industry. In 1869 he took out a patent for a fixed platform for drilling for oil off-shore up to a depth of 15 m (49 ft). With this idea, just ten years after Edwin Drake's success in on-shore oil drilling in Titusville, Pennsylvania, Rowland pioneered the technology of off-shore drilling for petroleum in which the United States later became the leading nation.
    [br]
    Principal Honours and Distinctions
    American Society of Civil Engineers: Director 1871–3, Vice-President 1886–7, Honorary Member 1899.
    Further Reading
    "Thomas Fitch Rowland", Dictionary of American Biography.
    WK

    Biographical history of technology > Rowland, Thomas Fitch

  • 9 Bullard, Edward Payson

    [br]
    b. 18 April 1841 Uxbridge, Massachusetts, USA
    d. 22 December 1906 Bridgeport, Connecticut, USA
    [br]
    American mechanical engineer and machine-tool manufacturer who designed machines for boring.
    [br]
    Edward Payson Bullard served his apprenticeship at the Whitin Machine Works, Whitinsville, Massachusetts, and worked at the Colt Armory in Hartford, Connecticut, until 1863; he then entered the employ of Pratt \& Whitney, also in Hartford. He later formed a partnership with J.H.Prest and William Parsons manufacturing millwork and tools, the firm being known as Bullard \& Prest. In 1866 Bullard organized the Norwalk Iron Works Company of Norwalk, Connecticut, but afterwards withdrew and continued the business in Hartford. In 1868 the firm of Bullard \& Prest was dissolved and Bullard became Superintendent of a large machine shop in Athens, Georgia. He later organized the machine tool department of Post \& Co. at Cincinnati, and in 1872 he was made General Superintendent of the Gill Car Works at Columbus, Ohio. In 1875 he established a machinery business in Beekman Street, New York, under the name of Allis, Bullard \& Co. Mr Allis withdrew in 1877, and the Bullard Machine Company was organized.
    In 1880 Bullard secured entire control of the business and also became owner of the Bridgeport Machine Tool Works, Bridgeport, Connecticut. In 1883 he designed his first vertical boring and turning mill with a single head and belt feed and a 37 in. (94 cm) capacity; this was the first small boring machine designed to do the accurate work previously done on the face plate of a lathe. In 1889 Bullard gave up his New York interests and concentrated his entire attention on manufacturing at Bridgeport, the business being incorporated in 1894 as the Bullard Machine Tool Company. The company specialized in the construction of boring machines, the design being developed so that it became essentially a vertical turret lathe. After Bullard's death, his son Edward Payson Bullard II (b. 10 July 1872 Columbus, Ohio, USA; d. 26 June 1953 Fairfield, Connecticut, USA) continued as head of the company and further developed the boring machine into a vertical multi-spindle automatic lathe which he called the "Mult-au-matic" lathe. Both father and son were members of the American Society of Mechanical Engineers.
    [br]
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven: Yale University Press; repub. 1926, New York and 1987, Bradley, Ill.: Lindsay Publications Inc. (describes Bullard's machines).
    RTS

    Biographical history of technology > Bullard, Edward Payson

  • 10 Sellers, William

    [br]
    b. 19 September 1824 Upper Darby, Pennsylvania, USA
    d. 24 January 1905 Philadelphia, Pennsylvania, USA
    [br]
    American mechanical engineer and inventor.
    [br]
    William Sellers was educated at a private school that had been established by his father and other relatives for their children, and at the age of 14 he was apprenticed for seven years to the machinist's trade with his uncle. At the end of his apprenticeship in 1845 he took charge of the machine shop of Fairbanks, Bancroft \& Co. in Providence, Rhode Island. In 1848 he established his own factory manufacturing machine tools and mill gearing in Philadelphia, where he was soon joined by Edward Bancroft, the firm becoming Bancroft \& Sellers. After Bancroft's death the name was changed in 1856 to William Sellers \& Co. and Sellers served as President until the end of his life. His machine tools were characterized by their robust construction and absence of decorative embellishments. In 1868 he formed the Edgemoor Iron Company, of which he was President. This company supplied the structural ironwork for the Centennial Exhibition buildings and much of the material for the Brooklyn Bridge. In 1873 he reorganized the William Butcher Steel Works, renaming it the Midvale Steel Company, and under his presidency it became a leader in the production of heavy ordnance. It was at the Midvale Steel Company that Frederick W. Taylor began, with the encouragement of Sellers, his experiments on cutting tools.
    In 1860 Sellers obtained the American rights of the patent for the Giffard injector for feeding steam boilers. He later invented his own improvements to the injector, which numbered among his many other patents, most of which related to machine tools. Probably Sellers's most important contribution to the engineering industry was his proposal for a system of screw threads made in 1864 and later adopted as the American national standard.
    Sellers was a founder member in 1880 of the American Society of Mechanical Engineers and was also a member of many other learned societies in America and other countries, including, in Britain, the Institution of Mechanical Engineers and the Iron and Steel Institute.
    [br]
    Principal Honours and Distinctions
    Chevalier de la Légion d'honneur 1889. President, Franklin Institute 1864–7.
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven; reprinted 1926, New York, and 1987, Bradley, Ill. (describes Sellers's work on machine tools).
    Bruce Sinclair, 1969, "At the turn of a screw: William Sellers, the Franklin Institute, and a standard American thread", Technology and Culture 10:20–34 (describes his work on screw threads).
    RTS

    Biographical history of technology > Sellers, William

  • 11 Sperry, Elmer Ambrose

    [br]
    b. 21 October 1860 Cincinnatus, Cortland County, New York, USA
    d. 16 June 1930 Brooklyn, New York, USA
    [br]
    American entrepreneur who invented the gyrocompass.
    [br]
    Sperry was born into a farming community in Cortland County. He received a rudimentary education at the local school, but an interest in mechanical devices was aroused by the agricultural machinery he saw around him. His attendance at the Normal School in Cortland provided a useful theoretical background to his practical knowledge. He emerged in 1880 with an urge to pursue invention in electrical engineering, then a new and growing branch of technology. Within two years he was able to patent and demonstrate his arc lighting system, complete with its own generator, incorporating new methods of regulating its output. The Sperry Electric Light, Motor and Car Brake Company was set up to make and market the system, but it was difficult to keep pace with electric-lighting developments such as the incandescent lamp and alternating current, and the company ceased in 1887 and was replaced by the Sperry Electric Company, which itself was taken over by the General Electric Company.
    In the 1890s Sperry made useful inventions in electric mining machinery and then in electric street-or tramcars, with his patent electric brake and control system. The patents for the brake were important enough to be bought by General Electric. From 1894 to 1900 he was manufacturing electric motor cars of his own design, and in 1900 he set up a laboratory in Washington, where he pursued various electrochemical processes.
    In 1896 he began to work on the practical application of the principle of the gyroscope, where Sperry achieved his most notable inventions, the first of which was the gyrostabilizer for ships. The relatively narrow-hulled steamship rolled badly in heavy seas and in 1904 Ernst Otto Schuck, a German naval engineer, and Louis Brennan in England began experiments to correct this; their work stimulated Sperry to develop his own device. In 1908 he patented the active gyrostabilizer, which acted to correct a ship's roll as soon as it started. Three years later the US Navy agreed to try it on a destroyer, the USS Worden. The successful trials of the following year led to widespread adoption. Meanwhile, in 1910, Sperry set up the Sperry Gyroscope Company to extend the application to commercial shipping.
    At the same time, Sperry was working to apply the gyroscope principle to the ship's compass. The magnetic compass had worked well in wooden ships, but iron hulls and electrical machinery confused it. The great powers' race to build up their navies instigated an urgent search for a solution. In Germany, Anschütz-Kämpfe (1872–1931) in 1903 tested a form of gyrocompass and was encouraged by the authorities to demonstrate the device on the German flagship, the Deutschland. Its success led Sperry to develop his own version: fortunately for him, the US Navy preferred a home-grown product to a German one and gave Sperry all the backing he needed. A successful trial on a destroyer led to widespread acceptance in the US Navy, and Sperry was soon receiving orders from the British Admiralty and the Russian Navy.
    In the rapidly developing field of aeronautics, automatic stabilization was becoming an urgent need. In 1912 Sperry began work on a gyrostabilizer for aircraft. Two years later he was able to stage a spectacular demonstration of such a device at an air show near Paris.
    Sperry continued research, development and promotion in military and aviation technology almost to the last. In 1926 he sold the Sperry Gyroscope Company to enable him to devote more time to invention.
    [br]
    Principal Honours and Distinctions
    John Fritz Medal 1927. President, American Society of Mechanical Engineers 1928.
    Bibliography
    Sperry filed over 400 patents, of which two can be singled out: 1908. US patent no. 434,048 (ship gyroscope); 1909. US patent no. 519,533 (ship gyrocompass set).
    Further Reading
    T.P.Hughes, 1971, Elmer Sperry, Inventor and Engineer, Baltimore: Johns Hopkins University Press (a full and well-documented biography, with lists of his patents and published writings).
    LRD

    Biographical history of technology > Sperry, Elmer Ambrose

  • 12 De Forest, Lee

    [br]
    b. 26 August 1873 Council Bluffs, Iowa, USA
    d. 30 June 1961 Hollywood, California, USA
    [br]
    American electrical engineer and inventor principally known for his invention of the Audion, or triode, vacuum tube; also a pioneer of sound in the cinema.
    [br]
    De Forest was born into the family of a Congregational minister that moved to Alabama in 1879 when the father became President of a college for African-Americans; this was a position that led to the family's social ostracism by the white community. By the time he was 13 years old, De Forest was already a keen mechanical inventor, and in 1893, rejecting his father's plan for him to become a clergyman, he entered the Sheffield Scientific School of Yale University. Following his first degree, he went on to study the propagation of electromagnetic waves, gaining a PhD in physics in 1899 for his thesis on the "Reflection of Hertzian Waves from the Ends of Parallel Wires", probably the first US thesis in the field of radio.
    He then joined the Western Electric Company in Chicago where he helped develop the infant technology of wireless, working his way up from a modest post in the production area to a position in the experimental laboratory. There, working alone after normal working hours, he developed a detector of electromagnetic waves based on an electrolytic device similar to that already invented by Fleming in England. Recognizing his talents, a number of financial backers enabled him to set up his own business in 1902 under the name of De Forest Wireless Telegraphy Company; he was soon demonstrating wireless telegraphy to interested parties and entering into competition with the American Marconi Company.
    Despite the failure of this company because of fraud by his partners, he continued his experiments; in 1907, by adding a third electrode, a wire mesh, between the anode and cathode of the thermionic diode invented by Fleming in 1904, he was able to produce the amplifying device now known as the triode valve and achieve a sensitivity of radio-signal reception much greater than possible with the passive carborundum and electrolytic detectors hitherto available. Patented under the name Audion, this new vacuum device was soon successfully used for experimental broadcasts of music and speech in New York and Paris. The invention of the Audion has been described as the beginning of the electronic era. Although much development work was required before its full potential was realized, the Audion opened the way to progress in all areas of sound transmission, recording and reproduction. The patent was challenged by Fleming and it was not until 1943 that De Forest's claim was finally recognized.
    Overcoming the near failure of his new company, the De Forest Radio Telephone Company, as well as unsuccessful charges of fraudulent promotion of the Audion, he continued to exploit the potential of his invention. By 1912 he had used transformer-coupling of several Audion stages to achieve high gain at radio frequencies, making long-distance communication a practical proposition, and had applied positive feedback from the Audion output anode to its input grid to realize a stable transmitter oscillator and modulator. These successes led to prolonged patent litigation with Edwin Armstrong and others, and he eventually sold the manufacturing rights, in retrospect often for a pittance.
    During the early 1920s De Forest began a fruitful association with T.W.Case, who for around ten years had been working to perfect a moving-picture sound system. De Forest claimed to have had an interest in sound films as early as 1900, and Case now began to supply him with photoelectric cells and primitive sound cameras. He eventually devised a variable-density sound-on-film system utilizing a glow-discharge modulator, the Photion. By 1926 De Forest's Phonofilm had been successfully demonstrated in over fifty theatres and this system became the basis of Movietone. Though his ideas were on the right lines, the technology was insufficiently developed and it was left to others to produce a system acceptable to the film industry. However, De Forest had played a key role in transforming the nature of the film industry; within a space of five years the production of silent films had all but ceased.
    In the following decade De Forest applied the Audion to the development of medical diathermy. Finally, after spending most of his working life as an independent inventor and entrepreneur, he worked for a time during the Second World War at the Bell Telephone Laboratories on military applications of electronics.
    [br]
    Principal Honours and Distinctions
    Institute of Electronic and Radio Engineers Medal of Honour 1922. President, Institute of Electronic and Radio Engineers 1930. Institute of Electrical and Electronics Engineers Edison Medal 1946.
    Bibliography
    1904, "Electrolytic detectors", Electrician 54:94 (describes the electrolytic detector). 1907, US patent no. 841,387 (the Audion).
    1950, Father of Radio, Chicago: WIlcox \& Follett (autobiography).
    De Forest gave his own account of the development of his sound-on-film system in a series of articles: 1923. "The Phonofilm", Transactions of the Society of Motion Picture Engineers 16 (May): 61–75; 1924. "Phonofilm progress", Transactions of the Society of Motion Picture Engineers 20:17–19; 1927, "Recent developments in the Phonofilm", Transactions of the Society of Motion Picture Engineers 27:64–76; 1941, "Pioneering in talking pictures", Journal of the Society of Motion Picture Engineers 36 (January): 41–9.
    Further Reading
    G.Carneal, 1930, A Conqueror of Space (biography).
    I.Levine, 1964, Electronics Pioneer, Lee De Forest (biography).
    E.I.Sponable, 1947, "Historical development of sound films", Journal of the Society of Motion Picture Engineers 48 (April): 275–303 (an authoritative account of De Forest's sound-film work, by Case's assistant).
    W.R.McLaurin, 1949, Invention and Innovation in the Radio Industry.
    C.F.Booth, 1955, "Fleming and De Forest. An appreciation", in Thermionic Valves 1904– 1954, IEE.
    V.J.Phillips, 1980, Early Radio Detectors, London: Peter Peregrinus.
    KF / JW

    Biographical history of technology > De Forest, Lee

  • 13 Siemens, Dr Ernst Werner von

    [br]
    b. 13 December 1816 Lenthe, near Hanover, Germany
    d. 6 December 1892 Berlin, Germany
    [br]
    German pioneer of the dynamo, builder of the first electric railway.
    [br]
    Werner von Siemens was the eldest of a large family and after the early death of his parents took his place at its head. He served in the Prussian artillery, being commissioned in 1839, after which he devoted himself to the study of chemistry and physics. In 1847 Siemens and J.G. Halske formed a company, Telegraphen-Bauanstalt von Siemens und Halske, to manufacture a dial telegraph which they had developed from an earlier instrument produced by Charles Wheatstone. In 1848 Siemens obtained his discharge from the army and he and Halske constructed the first long-distance telegraph line on the European continent, between Berlin and Frankfurt am Main.
    Werner von Siemens's younger brother, William Siemens, had settled in Britain in 1844 and was appointed agent for the Siemens \& Halske company in 1851. Later, an English subsidiary company was formed, known from 1865 as Siemens Brothers. It specialized in manufacturing and laying submarine telegraph cables: the specialist cable-laying ship Faraday, launched for the purpose in 1874, was the prototype of later cable ships and in 1874–5 laid the first cable to run direct from the British Isles to the USA. In charge of Siemens Brothers was another brother, Carl, who had earlier established a telegraph network in Russia.
    In 1866 Werner von Siemens demonstrated the principle of the dynamo in Germany, but it took until 1878 to develop dynamos and electric motors to the point at which they could be produced commercially. The following year, 1879, Werner von Siemens built the first electric railway, and operated it at the Berlin Trades Exhibition. It comprised an oval line, 300 m (985 it) long, with a track gauge of 1 m (3 ft 3 1/2 in.); upon this a small locomotive hauled three small passenger coaches. The locomotive drew current at 150 volts from a third rail between the running rails, through which it was returned. In four months, more than 80,000 passengers were carried. The railway was subsequently demonstrated in Brussels, and in London, in 1881. That same year Siemens built a permanent electric tramway, 1 1/2 miles (2 1/2 km) long, on the outskirts of Berlin. In 1882 in Berlin he tried out a railless electric vehicle which drew electricity from a two-wire overhead line: this was the ancestor of the trolleybus.
    In the British Isles, an Act of Parliament was obtained in 1880 for the Giant's Causeway Railway in Ireland with powers to work it by "animal, mechanical or electrical power"; although Siemens Brothers were electrical engineers to the company, of which William Siemens was a director, delays in construction were to mean that the first railway in the British Isles to operate regular services by electricity was that of Magnus Volk.
    [br]
    Principal Honours and Distinctions
    Honorary doctorate, Berlin University 1860. Ennobled by Kaiser Friedrich III 1880, after which he became known as von Siemens.
    Further Reading
    S.von Weiher, 1972, "The Siemens brothers, pioneers of the electrical age in Europe", Transactions of the Newcomen Society 45 (describes the Siemens's careers). C.E.Lee, 1979, The birth of electric traction', Railway Magazine (May) (describes Werner Siemens's introduction of the electric railway).
    Transactions of the Newcomen Society (1979) 50: 82–3 (describes Siemens's and Halske's early electric telegraph instruments).
    Transactions of the Newcomen Society (1961) 33: 93 (describes the railless electric vehicle).
    PJGR

    Biographical history of technology > Siemens, Dr Ernst Werner von

  • 14 Thomson, Elihu

    SUBJECT AREA: Electricity
    [br]
    b. 29 March 1853 Manchester, England
    d. 13 March 1937 Swampscott, Massachusetts, USA
    [br]
    English (naturalized) American electrical engineer and inventor.
    [br]
    Thomson accompanied his parents to Philadelphia in 1858; he received his education at the Central High School there, and afterwards remained as a teacher of chemistry. At this time he constructed several dynamos after studying their design, and was invited by the Franklin Institute to give lectures on the subject. After observing an arc-lighting system operating commercially in Paris in 1878, he collaborated with Edwin J. Houston, a senior colleague at the Central High School, in working out the details of such a system. An automatic regulating device was designed which, by altering the position of the brushes on the dynamo commutator, maintained a constant current irrespective of the number of lamps in use. To overcome the problem of commutation at the high voltages necessary to operate up to forty arc lamps in a series circuit, Thomson contrived a centrifugal blower which suppressed sparking. The resulting system was efficient and reliable with low operating costs. Thomson's invention of the motor meter in 1882 was the first of many such instruments for the measurement of electrical energy. In 1886 he invented electric resistance welding using low-voltage alternating current derived from a transformer of his own design. Thomson's work is recorded in his technical papers and in the 700plus patents granted for his inventions.
    The American Electric Company, founded to exploit the Thomson patents, later became the Thomson-Houston Company, which was destined to be a leader in the electrical manufacturing industry. They entered the field of electric power in 1887, supplying railway equipment and becoming a major innovator of electric railways. Thomson-Houston and Edison General Electric were consolidated to form General Electric in 1892. Thomson remained associated with this company throughout his career.
    [br]
    Principal Honours and Distinctions
    Chevalier and Officier de la Légion d'honneur 1889. American Academy of Arts and Sciences Rumford Medal 1901. American Institute of Electrical Engineers Edison Medal 1909. Royal Society Hughes Medal 1916. Institution of Electrical Engineers Kelvin Medal 1923, Faraday Medal 1927.
    Bibliography
    1934, "Some highlights of electrical history", Electrical Engineering 53:758–67 (autobiography).
    Further Reading
    D.O.Woodbury, 1944, Beloved Scientist, New York (a full biography). H.C.Passer, 1953, The Electrical Manufacturers: 1875–1900, Cambridge, Mass, (describes Thomson's industrial contribution).
    K.T.Compton, 1940, Biographical Memoirs of Elihu Thomson, Washington, DCovides an abridged list of Thomson's papers and patents).
    GW

    Biographical history of technology > Thomson, Elihu

  • 15 Davidson, Robert

    [br]
    b. 18 April 1804 Aberdeen, Scotland
    d. 16 November 1894 Aberdeen, Scotland
    [br]
    Scottish chemist, pioneer of electric power and builder of the first electric railway locomotives.
    [br]
    Davidson, son of an Aberdeen merchant, attended Marischal College, Aberdeen, between 1819 and 1822: his studies included mathematics, mechanics and chemistry. He subsequently joined his father's grocery business, which from time to time received enquiries for yeast: to meet these, Davidson began to manufacture yeast for sale and from that start built up a successful chemical manufacturing business with the emphasis on yeast and dyes. About 1837 he started to experiment first with electric batteries and then with motors. He invented a form of electromagnetic engine in which soft iron bars arranged on the periphery of a wooden cylinder, parallel to its axis, around which the cylinder could rotate, were attracted by fixed electromagnets. These were energized in turn by current controlled by a simple commutaring device. Electric current was produced by his batteries. His activities were brought to the attention of Michael Faraday and to the scientific world in general by a letter from Professor Forbes of King's College, Aberdeen. Davidson declined to patent his inventions, believing that all should be able freely to draw advantage from them, and in order to afford an opportunity for all interested parties to inspect them an exhibition was held at 36 Union Street, Aberdeen, in October 1840 to demonstrate his "apparatus actuated by electro-magnetic power". It included: a model locomotive carriage, large enough to carry two people, that ran on a railway; a turning lathe with tools for visitors to use; and a small printing machine. In the spring of 1842 he put on a similar exhibition in Edinburgh, this time including a sawmill. Davidson sought support from railway companies for further experiments and the construction of an electromagnetic locomotive; the Edinburgh exhibition successfully attracted the attention of the proprietors of the Edinburgh 585\& Glasgow Railway (E \& GR), whose line had been opened in February 1842. Davidson built a full-size locomotive incorporating his principle, apparently at the expense of the railway company. The locomotive weighed 7 tons: each of its two axles carried a cylinder upon which were fastened three iron bars, and four electromagnets were arranged in pairs on each side of the cylinders. The motors he used were reluctance motors, the power source being zinc-iron batteries. It was named Galvani and was demonstrated on the E \& GR that autumn, when it achieved a speed of 4 mph (6.4 km/h) while hauling a load of 6 tons over a distance of 1 1/2 miles (2.4 km); it was the first electric locomotive. Nevertheless, further support from the railway company was not forthcoming, although to some railway workers the locomotive seems to have appeared promising enough: they destroyed it in Luddite reaction. Davidson staged a further exhibition in London in 1843 without result and then, the cost of battery chemicals being high, ceased further experiments of this type. He survived long enough to see the electric railway become truly practicable in the 1880s.
    [br]
    Bibliography
    1840, letter, Mechanics Magazine, 33:53–5 (comparing his machine with that of William Hannis Taylor (2 November 1839, British patent no. 8,255)).
    Further Reading
    1891, Electrical World, 17:454.
    J.H.R.Body, 1935, "A note on electro-magnetic engines", Transactions of the Newcomen Society 14:104 (describes Davidson's locomotive).
    F.J.G.Haut, 1956, "The early history of the electric locomotive", Transactions of the Newcomen Society 27 (describes Davidson's locomotive).
    A.F.Anderson, 1974, "Unusual electric machines", Electronics \& Power 14 (November) (biographical information).
    —1975, "Robert Davidson. Father of the electric locomotive", Proceedings of the Meeting on the History of Electrical Engineering Institution of Electrical Engineers, 8/1–8/17 (the most comprehensive account of Davidson's work).
    A.C.Davidson, 1976, "Ingenious Aberdonian", Scots Magazine (January) (details of his life).
    PJGR / GW

    Biographical history of technology > Davidson, Robert

См. также в других словарях:

  • Society of Manufacturing Engineers — Founded 1932 Location …   Wikipedia

  • Society of Automotive Engineers — SAE International (SAE) is a professional organization for mobility engineering professionals in the aerospace, automotive, and commercial vehicle industries. The Society is a standards development organization for the engineering of powered… …   Wikipedia

  • Manufacturing engineering — is a field dealing with different manufacturing practices and the research and development of processes, machines and equipment. Contents 1 Overview 2 History 2.1 Modern developments 3 Education …   Wikipedia

  • Computer-integrated manufacturing — Manufacturing Systems Integration Program, NIST 2008. Computer integrated manufacturing (CIM) is the manufacturing approach of using computers to control the entire production process.[1] …   Wikipedia

  • Engineering society — An engineering society is a professional organization for engineers of various disciplines. Some are umbrella type organizations which accept many different disciplines, while others are discipline specific. Many award professional designations,… …   Wikipedia

  • Lean manufacturing — or lean production, which is often known simply as Lean , is the practice of a theory of production that considers the expenditure of resources for any means other than the creation of value for the presumed customer to be wasteful, and thus a… …   Wikipedia

  • Harold and Inge Marcus Department of Industrial and Manufacturing Engineering — The Harold and Inge Marcus Department of Industrial and Manufacturing Engineering is the industrial engineering department at the Pennsylvania State University in State College, Pennsylvania, U.S.A. Founded in 1908, it is the oldest industrial… …   Wikipedia

  • Institute of Industrial Engineers — For other uses of the three letter acronym IIE, see IIE. The Institute of Industrial Engineers (IIE) is a professional society dedicated solely to the support of the industrial engineering profession and individuals involved with improving… …   Wikipedia

  • Computer Integrated Manufacturing — (CIM) is a method of manufacturing in which the entire production process is controlled by computer. Typically, it relies on closed loop control processes, based on real time input from sensors. It is also known as flexible design and… …   Wikipedia

  • Computer-integrated manufacturing — CIM, von engl. computer integrated manufacturing, dt. computerintegrierte Produktion bzw. computerintegrierte Fertigung ist ein Sammelbegriff für verschiedene Tätigkeiten, die in einem Unternehmen durch den Computer unterstützt werden, und daher… …   Deutsch Wikipedia

  • Die (manufacturing) — For the thread cutting tool, see Tap and die. A die is a specialized tool used in manufacturing industries to cut or shape material using a press. Like molds, dies are generally customized to the item they are used to create. Products made with… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»